Friday, August 5, 2016

A planet of mass m moves in the inverse square central force field of the Sun of mass M . If the semi-major and semi-minor axes of the orbit are a and b , respectively, the total energy of the planet is:

          (a)    - ( G M m ) / ( a + b )
          (b)   - ( G M m ) [ ( 1 / a ) + ( 1 / b ) ]
          (c)    – [ ( G M m ) / a ] [ ( 1 / b ) - ( 1 / a ) ]
          (d)   - ( G M m ) / [ ( a – b ) / ( a + b )]


Solution:

Consider a planet is revolving around sun in elliptical orbit and the sun is situated at the centre of its orbit. Let the planet is moving with a linear velocity v1 and v2 when planet is at semi major axis ( a ) and semi minor axis ( b ).
Therefore,
Conservation of Momentum
L = m va = m vb
By rearranging the terms we get,
v2 = v1 ( a / b )
 - - - - - - - - - - - - - - - - - - - - - - -   ( 1 )
Total energy of planet at semi major axis can be given as
E1 = K.E.1 + P.E.1
E1 = ( 1 / 2 ) m V12 + [ - (  G M m / a ) ]
                                                                            - - - - - - - - - - - - - - - - - - - - - - - ( 2 )
Similarly,
Total energy of planet at semi minor axis can be given as
E2 = K.E.2 + P.E.2
E2 = ( 1 / 2 ) m V22 + [ - (  G M m / b ) ]
According to law of conservation of energy,
E1 = E2 =
( 1 / 2 ) m V12 + [ - (  G M m / a ) ] = ( 1 / 2 ) m V22 + [ - ( G M m / b ) ]
( 1 / 2 ) m V12 - ( G M m / a ) = ( 1 / 2 ) m V22 - ( G M m / b )
Therefore,
( 1 / 2 ) m V12 - ( 1 / 2 ) m V2= ( G M m / a ) - ( G M m / b )
From equation (1), above equation becomes
( 1 / 2 ) m V12 - ( 1 / 2 ) m ( V1 ( a / b ) )= ( G M m / a ) - ( G M m / b )
( 1 / 2 ) m [ V1- ( V1 ( a / b ) )] = G M m [ ( 1 / a ) - ( 1 / b ) ]
( 1 / 2 ) m V1 [ 1 - ( a / b )2  ] = G M m [ ( b – a ) / a b ]
( 1 / 2 ) m V12  [ ( b- a) / b] = G M m [ ( b – a ) /  a b ]
As we known
( x- y) = ( x – y ) ( x + y )
Therefore above equation becomes,
 ( 1 / 2 ) m V12   { [ ( b – a ) ( b + a ) ] / b} = G M m [ ( b – a ) / a b ]
( 1 / 2 ) m V12  = G M m [ ( b – a ) / a b ] { b/ [ ( b – a ) ( b + a ) ] }
( 1 / 2 ) m V12  = G M m [ b /  a ] [  1 / ( b + a ) ]
But
K.E. 1 = ( 1 / 2 ) m V 12
Putting this value in equation no (2) we get.
E1 = E2 = E = { G M m [ b / a] [ 1/ ( b + a ) ] }  - ( G M m / a )
E  = [ ( G M m ) / a ] { [ b / ( b + a ) ] – 1 }
E        = [ ( G M m ) / a ] { ( b – b – a ) / ( b + a ) }
E = [ ( G M m ) / a ] { ( a ) / ( b + a ) }
E = [ ( G M m ) / ( a + b ) ]

Answer : Total energy of planet is E = [ ( G M m ) / ( a + b ) ]

No comments:

Post a Comment

Which Spectral Series of Hydrogen Is Visible? The Balmer Series Explained

 Which Spectral Series of Hydrogen Appears in the Visible Region? The hydrogen atom has fascinated scientists for centuries, and its spectra...