Friday, July 24, 2015

Black Body Radiation

If the temperature of black body is increased by a factor of 2, the amount of energy and volume radiated increases by a factor of . . . . . . . . . .

( a ) 2               ( b ) 4               ( c ) 8               ( d ) 16


Definition
A black body is a theoretical object that absorbs all radiation that incident on its surface. As there is no reflection of light at room temperature the body is appears black ( that’s why it is called as black body ). Interestingly, when heated a ‘black body’ can radiate depending upon the temperature to which it is heated. This is known as ‘black body radiation’.

According to Stefan the power radiated from the blackbody can be determine by the formula


P = σ A T4  . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 1 )
Where
P = Power radiated from the black body in W ( J / s ) 
σ = Stefan's Constant 5.67 x 10 - 8 W m - 2 K - 4  .
A = Surface area of black body ( m ² )
 T = Temperature of body ( in Kelvin Scale [ K ] )
In other words we can say that the power radiated by the body is varies linearly with the forth power of its absolute temperature ( T 4 ) . Therefore the total energy increases so much for a relatively small increase in temperature. 
Stefan's Law ( P = σ A T)

   Problem:
 If the temperature of black body is increased by a factor of 2, the amount of energy and volume radiated increases by a factor of . . . . . . . . . .
Solution :
Let us consider that the P1 be the power radiated from the black body in W ( J / s ) at initial temperature  T1 ( K ).   ‘ A ’  be the  Surface area of black body  and  P2 be the power radiated from the black body in W ( J / s ) at final  temperature  T2 ( K ) .
At initial temperature  T1 the Stefan’s law can be written as
P1 = σ A T14  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 )
Similarly at final temperature  T2 the Stefan’s law can be written as
P2 = σ A T24  . . . . . . . .. . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 3 )
Taking ratio of eqn ( 2 ) and ( 3 ) we get
 ( P 1 / P 2 ) = [ ( σ A T14 ) / ( σ A T24 ) ] . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 4 )
But
2 T1 = T2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( Given )
Putting this value in equation ( 4 ) we get ,
( P 1 / P 2 ) = { [ σ A T14 ] / [ σ A ( 2 T1)4 ] } . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .( 5 )
( P 1 / P 2 ) = ( 1 / 16 )
P 2 =  16 P1   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( Answer )

Therefore we can say that if If the temperature of black body is increased by a factor of 2, the amount of energy and volume radiated increases by a factor of 16 (Answer : d)

No comments:

Post a Comment

Understanding the Light Year: A Unit of Distance and Its Cosmic Significance

 Imagine you're gazing up at the night sky, marveling at the twinkling stars. Have you ever wondered how far away those stars are? What ...