Monday, July 30, 2018

The relation between time ‘t’ and distance ‘x’ is t=ax^2+bx


The relation between time ‘t’ and distance ‘x’ is t=ax^2+bx,   where ‘a’ and  ‘b’ are constant. The acceleration is…..
a.   -2abv^2         
b.     2bv^2           
c.   -2av^3             
d.    2av^2


Solution:

We have,
t=ax^2+bx
Differentiating with respect to ‘t’
(dt/dt)=(d/dt)(ax^2+bx)
1=(d/dt) (ax^2 )+(d/dt)(bx)
1=a(d/dt) (x^2 )+b(d/dt)(x)
1=2 a x(  dx/dt)+b (dx/dt)
1=2 a x v+b v
1=2 a x v+b v
1=(2 a x +b)v
Therefore,
v=1/((2 a x +b) ) 
- - - - - - - - - -  (1)
W. k. t.
acceleration=dv/dt = d/dt (1/((2 a x +b) )  )
acceleration= ((-2a)/(2 a x +b)^2 ) dx/dt
acceleration= ((-2a)/(2 a x +b)^2 )  dx/dt
  acceleration=-2a(1/(2 a x +b)^2 )  v
 acceleration=-2a ( (1/((2 a x +b) )   )^2  )v

From equation (1)
acceleration=-2a( v^2  ). v
Therefore,
acceleration=-2av^3


Answer :                                Option (c) is correct

No comments:

Post a Comment

Thomson’s Atomic Model Explained: What’s Inside an Atom? Can You Guess?

  Thomson’s Atomic Model: What Really Lies Inside an Atom? Atoms—the tiny building blocks of everything around us—have fascinated scientists...