The
relation between time ‘t’ and distance ‘x’ is t=ax^2+bx, where ‘a’ and ‘b’ are constant. The acceleration is…..
a. -2abv^2
b. 2bv^2
c. -2av^3
d. 2av^2
b. 2bv^2
c. -2av^3
d. 2av^2
Solution:
We
have,
t=ax^2+bx
Differentiating
with respect to ‘t’
(dt/dt)=(d/dt)(ax^2+bx)
1=(d/dt)
(ax^2 )+(d/dt)(bx)
1=a(d/dt)
(x^2 )+b(d/dt)(x)
1=2 a
x( dx/dt)+b (dx/dt)
1=2 a
x v+b v
1=2 a
x v+b v
1=(2 a
x +b)v
Therefore,
v=1/((2
a x +b) )
- - -
- - - - - - - (1)
W. k.
t.
acceleration=dv/dt
= d/dt (1/((2 a x +b) ) )
acceleration=
((-2a)/(2 a x +b)^2 ) dx/dt
acceleration=
((-2a)/(2 a x +b)^2 ) dx/dt
acceleration=-2a(1/(2 a x +b)^2 ) v
acceleration=-2a (〖
(1/((2 a x +b) ) )〗^2 )v
From
equation (1)
acceleration=-2a(〖 v〗^2 ). v
Therefore,
acceleration=-2av^3
Answer
: Option
(c) is correct
No comments:
Post a Comment