Wednesday, February 8, 2017

The angle between vector ( i + j ) and ( j + k ) is ( in Radian )




solution :  -
Let us consider
A = i + j
B = j + k
We know that
A . B = І A І . І B І Cos Ѳ
Therefore
Cos Ѳ = ( A . B ) / ( І A І . І B І )
 . . . . . . . . . . . . . . . . . . . . . ( 1 )
Now
A .B        = ( i + j ) . (j + k )
                = ( i . j ) + ( i . k ) + ( j . j  ) + ( j . k )

As Cos 90 = 0 ,
 ( i . j  )    = 0
Similarly ,
i . j  ) = ( i . k ) = ( j . k ) = 0 
Therefore ,
A . B       = ( j . j  )
                = ( 1 . 1)
                = 1
. . . . . . . . . . . . . . . . . . . . . ( 2 )

The magnitude of the vector can be given as . . . . . .  .
I A I        = √  ( I i I 2 + I j I 2   + I k I 2 )  
                =  √  ( I 1 I 2 + I 1 I 2   + I 0 I 2 )
                = √  ( 1 + 1 + 0)
I A I        = √  ( 2 )

I B I         = √  ( 2 )

Therefore
I A I . I B I =  [ √  ( 2 ) ] .  [ √  ( 2 ) ]
                   = 2
. . . . . . . . . . . . . . . . . . . . . ( 3 )
Putting equation ( 2 ) and ( 3 ) in equation ( 1 ) we get ,

Cos Ѳ    = ( A . B ) / ( І A І . І B І )
Cos Ѳ    = ( 1 ) [ √  ( 2 ) ] .  [ √  ( 2 ) ]

Cos Ѳ    = 1 / 2

Therefore ,
Ѳ             = Cos - 1 ( 1 / 2 )
Ѳ             = 60O
Rad        =  π / 3

Answer:
The angle between vector ( i + j ) and ( j + k ) is  π / 3

No comments:

Post a Comment

Understanding the Light Year: A Unit of Distance and Its Cosmic Significance

 Imagine you're gazing up at the night sky, marveling at the twinkling stars. Have you ever wondered how far away those stars are? What ...