solution : -
Let us consider
A = i + j
B = j + k
We know that
A . B = І A І . І B І
Cos Ѳ
Therefore
Cos
Ѳ = ( A . B ) / ( І A І . І B І )
.
. . . . . . . . . . . . . . . . . . . . ( 1 )
Now
A .B =
( i + j ) . (j + k )
=
( i . j ) + ( i . k ) + ( j . j )
+ ( j . k )
As Cos 90 = 0 ,
( i . j ) =
0
Similarly ,
( i . j )
= ( i . k ) = ( j . k ) = 0
Therefore ,
A . B = ( j
. j )
=
( 1 . 1)
=
1
.
. . . . . . . . . . . . . . . . . . . . ( 2 )
The magnitude of the
vector can be given as . . . . . . .
I A
I = √ ( I i I 2 +
I j I 2 + I k I 2 )
= √ (
I 1 I 2 + I 1 I 2 + I 0 I 2 )
= √ (
1 + 1 + 0)
I A I = √ (
2 )
I B I = √ (
2 )
Therefore
I A I . I B I = [ √ (
2 ) ] . [ √ ( 2 ) ]
=
2
.
. . . . . . . . . . . . . . . . . . . . ( 3 )
Putting equation ( 2 )
and ( 3 ) in equation ( 1 ) we get ,
Cos Ѳ =
( A . B ) / ( І A І . І B І )
Cos Ѳ =
( 1 ) [ √ ( 2 ) ] . [ √ ( 2 ) ]
Cos Ѳ =
1 / 2
Therefore ,
Ѳ =
Cos - 1 ( 1 / 2 )
Ѳ =
60O
Rad = π
/ 3
Answer:
The angle between vector
( i + j ) and ( j + k ) is π / 3
No comments:
Post a Comment