Wednesday, February 8, 2017

The angle between vector ( i + j ) and ( j + k ) is ( in Radian )




solution :  -
Let us consider
A = i + j
B = j + k
We know that
A . B = І A І . І B І Cos Ѳ
Therefore
Cos Ѳ = ( A . B ) / ( І A І . І B І )
 . . . . . . . . . . . . . . . . . . . . . ( 1 )
Now
A .B        = ( i + j ) . (j + k )
                = ( i . j ) + ( i . k ) + ( j . j  ) + ( j . k )

As Cos 90 = 0 ,
 ( i . j  )    = 0
Similarly ,
i . j  ) = ( i . k ) = ( j . k ) = 0 
Therefore ,
A . B       = ( j . j  )
                = ( 1 . 1)
                = 1
. . . . . . . . . . . . . . . . . . . . . ( 2 )

The magnitude of the vector can be given as . . . . . .  .
I A I        = √  ( I i I 2 + I j I 2   + I k I 2 )  
                =  √  ( I 1 I 2 + I 1 I 2   + I 0 I 2 )
                = √  ( 1 + 1 + 0)
I A I        = √  ( 2 )

I B I         = √  ( 2 )

Therefore
I A I . I B I =  [ √  ( 2 ) ] .  [ √  ( 2 ) ]
                   = 2
. . . . . . . . . . . . . . . . . . . . . ( 3 )
Putting equation ( 2 ) and ( 3 ) in equation ( 1 ) we get ,

Cos Ѳ    = ( A . B ) / ( І A І . І B І )
Cos Ѳ    = ( 1 ) [ √  ( 2 ) ] .  [ √  ( 2 ) ]

Cos Ѳ    = 1 / 2

Therefore ,
Ѳ             = Cos - 1 ( 1 / 2 )
Ѳ             = 60O
Rad        =  π / 3

Answer:
The angle between vector ( i + j ) and ( j + k ) is  π / 3

No comments:

Post a Comment

Which Spectral Series of Hydrogen Is Visible? The Balmer Series Explained

 Which Spectral Series of Hydrogen Appears in the Visible Region? The hydrogen atom has fascinated scientists for centuries, and its spectra...