Sunday, February 19, 2017

The equivalent magnetic moment of an electron revolving around a nucleus

An electron in an atom revolves around nucleus in an orbit of radius 0.5 Å. Calculate the equivalent magnetic moment, if the frequency of revolution of electron is 1010MHz







Given
Radius of orbit                =       r        =       0.5 Å          =   0.5 X 10-10 m
Frequency of revolution =       f        =       1010 MHz   =  1016 Hz
Charge on electron         =       e        =       1.6 X 10 -19 C
Magnetic moment          =       M      =       ?
The electron revolving in a circular orbit around the nucleus behaves as a current loop and hence posses a magnetic momentum
The magnetic momentum can be given as
M = I A
_ _ _ _ _ _ _ _ _ _ (1)
Where
I is a current flowing through the circular loop
i.e.
I = e / T
T is a time period=1 / f
Therefore  
1 / T =  f
I = e f
_ _ _ _ _ _ _ _ _ _ (2)
And
A is a area of circular loop
i.e.
A = π r2
_ _ _ _ _ _ _ _ _ _ (3)
From equation (1) (2) and (3) we get
                            M = e f  π r2   
                            M = 1.6 X 10 -19 X 1016 X 3.14 X (0.5 X 10-10 )2
                                           M = 1.6 X 10 -19 X 1016 X 3.14 X 0.25 X 10-20 
                                           M = 1.6 X 3.14 X 0.25 X 10 -19 X 1016 X 10-20
                                           M = 1.256 X 10 -23 Am2
The equivalent magnetic moment of an electron revolving around a nucleus in an orbit of radius 0.5 Å with frequency 1010MHz is 1.256 X 10 -23 Am2

No comments:

Post a Comment

Which Spectral Series of Hydrogen Is Visible? The Balmer Series Explained

 Which Spectral Series of Hydrogen Appears in the Visible Region? The hydrogen atom has fascinated scientists for centuries, and its spectra...